
 

 

A General and Effective Mode Filtering Method 
for the Suppression of Clutter in 

Far-Field Antenna Measurements 
S.F. Gregson1, 2, C.G. Parini1, A.C. Newell3 

 
1Queen Mary University of London 

School of Electronic Engineering and Computer Sciences 
Peter Landin Building, 

10 Godward Square 
London UK E1 4FZ 

 
2National Physical Laboratory 

Hampton Road, Teddington, UK, TW11 0LW 
 

3Newell Near-Field Consultants, 
2305 Vassar Drive, 
Boulder, CO 80305 

 
stuart.gregson@qmul.ac.uk, c.g.parini@qmul.ac.uk, allen_newell@qwestoffice.net

 
Abstract—The use of mode filtering to improve the quality of 
antenna measurements taken in non-anechoic environments is 
well known, [1, 2, 3, 4, 5].  In the far-field case [6, 7, 8], it has 
been shown that it is possible to use standard cylindrical near-
field theory [8] to implement the necessary mode filtering using a 
singularly polarized, great circle, far-field pattern cut consisting 
of amplitude and phase data.  The careful verification of this 
technique using a compact antenna test range (CATR) was 
reported in [7, 8] however that implementation had, as a 
prerequisite, the need to acquire the far-field data on a 
monotonic and equally spaced pattern abscissa.  In many 
instances this is not convenient or perhaps impossible.  This 
paper presents a recent development which allows data to be 
processed rigorously when having been acquired using an 
unequally spaced angular abscissa.  This paper sets out the novel, 
far more sophisticated, algorithm together with results of actual 
range measurements that were processed using this new 
technique. 

I. INTRODUCTION 

A far-field antenna pattern is characterised by exhibiting a 
spatial variation that has an angular dependence, i.e. an: 
angular amplitude variation, angular phase variation and 
angular polarisation variation.  Ideally, all of these properties 
can be measured by placing the antenna under test (AUT) in a 
perfectly uniform, homogeneous, plane wave field and by 
mechanically rotating it while measuring the received 
amplitude and/or phase [8].  In practice, perhaps the most 
straightforward measurement method is to approximate a 
plane wave front, locally, over the AUT from a small portion 
of a spherical wave-front with a large radius.  This can be 

achieved by placing a low gain source antenna at a large 
physical and electrical distance from the AUT so that the field 
illuminating the antenna’s aperture very closely approximates 
a transverse electric and magnetic (TEM) plane-wave.  An 
alternative way to produce a TEM wave is to use the very 
carefully controlled reflection from a precisely curved 
conducting surface to collimate the field radiated by the source 
antenna into a plane–wave.  The popularity of these compact 
antenna test ranges (CATR), i.e. compact when compared to a 
point-source far-field range, can perhaps be seen to stem from 
the simplicity with which far-field parameters can be obtained 
from the experimental equipment, the absence of a 
requirement to undertake intensive mathematical post-
processing before useful results can be obtained, and the 
ability to very efficiently acquire zero-dimensional (e.g. 
boresight) and one-dimensional (e.g. great circle cut) data. 

Reflections in antenna measurement systems can often be 
seen to comprise the single largest component of measurement 
uncertainty within the uncertainty budget of a given range [8].  
Considerable space has been devoted to the subject of range 
multipath suppression in the open literature with a great deal 
of time, effort, and ingenuity being directed towards 
quantifying and subsequently extracting reflected fields from 
antenna pattern measurements [1, 2, 3, 4, 5, 6, 7, 8].  The 
mode orthogonalisation and filtering techniques that have 
proved so overwhelmingly successful in near-field 
applications (planar, cylindrical, spherical) were only 
comparatively recently extended for use with far-field ranges 
[6, 7] for improving one [6, 7] and two-dimensional [8] 
antenna pattern data.  However, although these techniques 
have proved to be very successful in processing far-field data, 



 

 

they have been predicated upon the availability of data 
sampled on a monotonic and equally spaced abscissa.  While 
this is something that can, to a large extent, be assumed to be 
available when taking near-field measurements, the same is 
not necessarily true for the far-field case.  The following 
section presents the development of a new, general purpose, 
correction technique with the subsequent section then 
illustrating the success of this technique with actual range 
measurements. 

II. GENERALISED APPROACH TO 
FAR-FIELD MODE FILTERING 

In general, when we take near-field measurements we do so 
by acquiring data across a convenient surface which bounds the 
radiator.  We have a forward transmission equation which we 
invert to solve for the unknown mode coefficients of the vector 
basis functions that are commensurate with the surface that we 
are testing on.  Once we know this set of mode coefficients, we 
can correct them for the directive and polarisation properties of 
the measuring probe.  We then use these compensated mode 
coefficients with the forward transmission equation to solve for 
the field anywhere outside of the near-field sampling surface 
including the far-field region where, asymptotically, we choose 
a spherical surface of infinite radius.  So that we may develop 
the generalised post-processing let us start by taking the 
standard transmission equation [8] which relates cylindrical 
mode coefficients (CMC) to far-fields where, as per the usual 
convention, the unimportant far-field spherical phase factor and 
inverse r term have been suppressed, 
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Here, for a fixed measurement radius and frequency the 
electric field can be expressed in terms of mode coefficients, 
which are complex numbers that do not vary with any of the 
measuring coordinates and are instead functions of n, the 
angular index and  the Fourier variable.  Thus, for the case 
where  = /2 radians, i.e. the case of a great circle far-field 
pattern cut, the electric field can be expressed as, 
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With no loss of generality, we may rewrite this summation 
in the form of a matrix multiplication yielding, 
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Here, the matrix of basis functions M which has n rows by 
nn columns is defined as, 
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Here, the elements within the matrix M have a magnitude of 
unity with only the phase varying from element to element.  
Inverting this expression and simplifying yields, 
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This matrix equation expresses the unknown CMCs in 
terms of the far-field points.  A similar expression can be 
obtained for the orthogonal field component and second 
independent set of CMCs.  In inverting this system of equations 
we have assumed that the matrix M is a non-singular square 
matrix and the superscript -1 denotes the matrix inverse such 
that by definition M-1M = I where I is the identity matrix.  In 
general the matrix M will not be square and we will need to 
find its inverse using some degree of estimation.  Fortunately, 
we can find a pseudo inverse matrix by using the principle of 
least squares to obtain an approximate solution.  From equation 
(3) and multiplying by the Hermitian (conjugate) transpose of 
M we obtain, 

 T TM Mb M v  

Here v, is a column vector set of measurements, M is a 
matrix of basis functions, i.e. wave functions, and b is a column 
vector set of unknown mode coefficients and MT is the 
Hermitian transpose of M.  Thus when the columns of M are 
linearly independent, the product MTM is invertible and we 
may write that, 

   1T T Pb M M M v M v


   

Where, Mp denotes the pseudo inverse matrix.  Thus, we 
can obtain the set of unknown mode coefficients from the set of 
measurements and the pseudo inverse matrix of basis functions 
using, 
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Although this looks to be a reasonable strategy, the 
difficulty associated with this approach is that the matrix M 
will, for any practical measurement, be fairly large.  However, 
as the far-field measured data comprises a pattern cut, this 
matrix will likely be much smaller than would otherwise be the 
case if two-dimensional pattern data were under consideration.  
Hence, alternative more efficient methods for computing the 
pseudo inverse are generally needed with the iterative 
conjugate gradient (CG) method [10] or least squares conjugate 
gradient (LSQR) method [11] being popular choices.  The 
LSQR method is a particular implementation of the CG method 
which offers a numerically stable and computationally efficient 
solution for the inversion of the matrix M.  A detailed treatment 
of the LSQR is beyond the scope of this paper and is instead 
left to the open literature cf. [11]. 



 

 

When constructing the matrix of basis functions 
consideration must be taken as to the number and range of 
CMCs that are needed.  The highest order cylindrical mode that 
can be computed from the far-field measured data can be 
determined from the arithmetic mean sample spacing using [8], 


Max ceiln




 
    

 

Here, ceil is used to denote a function that rounds to the 
nearest integer towards positive infinity.  In this case,  is 
taken to be the arithmetic mean angular sample spacing 
between the data points.  Providing that the data points are not 
too unevenly distributed, this formula will provide a reliable 
estimate of the highest order mode that can be reliably 
computed.  Thus, the range of modes will span –nMax ≤ n ≤ nMax.  
As this algorithm does not utilise the FFT there is no need to 
have the number of modes equal an integer power of two.  
Thus, we are free to choose the number of modes, N, as being, 


Max2 1N n   

The computed modes can be filtered using a band-pass 
windowing function so that only those modes which are 
associated with the AUT are retained [6, 7, 8] whereupon the 
filtered far-fields can be obtained from an application of 
equation (3).  Although we can, for the sake of computational 
efficiency, use the pre-computed M matrix so that the filtered 
fields are reconstructed at the measurement points, we are of 
course free to choose a different M matrix so that the 
reconstructed far-field points can be tabulated on an, e.g. 
equally spaced, grid of our choosing. 

III. PRELIMINARY RESULTS 

The Queen Mary University of London (QMUL) mm-wave 
Compact Antenna Test Range (CATR) is formed from a single 
sector shaped offset reflector antenna with a 3 metre diameter 
reflector and is constructed from 18 individual high precision 
panels where the individual panels have a measured average 
root mean squared (RMS) surface accuracy of between 8 and 
15 microns.  Each panel has three, micrometer adjustable, 
mounting points which are individually optically aligned 
providing an overall surface RMS accuracy of approximately 
90m.  An anechoic chamber completely encloses the mm-
wave CATR to control and minimise the range reflections.  
The QMUL CATR is described in detail in reference [9] and is 
presented in Figure 1. 

In the absence of some overriding definitive standard or 
infallible (truth) model, the only practical methodology for 
examining the effectiveness of a new processing technique is 
by way of measurement repetition.  This repetition can be 
accomplished without alteration to the measurement 
configuration, to simply address repeatability, or with the 
inclusion of some parametric change whereupon it can be used 
to assess sensitivity to that particular change.  In this case, 
repeat measurements were taken of the far-field great circle 
azimuth cut of a medium gain (aperture diameter 127mm) x-
band corrugated horn where a single parametric change was 
introduced into the measurement.  This change comprised the 
introduction of a 0.6 m by 0.6 m flat reflecting plate that was 

located in the same horizontal plane as the AUT.  This was 
chosen to constitute a worst case scattering configuration as 
the specular reflection of the main beam of the corrugated 
horn directly illuminated the CATR reflector.  This 
configuration can be seen presented in Figure 1.  This system 
was used to acquire far-field amplitude and phase pattern data 
as a function of angle.  However, the measurements were 
taken at regular intervals in time since this process was known 
to be the most accurate technique for recording data within 
this facility.  Although the data was sampled using a regular 
time basis, the acceleration of the positioner resulted in the 
data being tabulated on an irregularly spaced angular grid.  
However, at a typical rate of 15 samples per decimal degree, 
this data was grossly over sampled when compared to the 
angular increment suggested by the cylindrical sampling 
theorem [6, 7, 8] which determined that a sample spacing of 
circa 2.5 would have been sufficient, 
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Here, n1 is a positive integer that depends upon the accuracy 
required (e.g. n1 = 10 [8]), k0 is the free-space wave number, 
and 0 is the maximum radial extent (MRE) [6, 7, 8].  In the 
original work [7], this irregularly spaced data was re-tabulated, 
using cubic spline interpolation, so that the data points were 
arranged on an equally spaced, monotonic grid in order that 
the necessary fast Fourier transform (FFT) based post 
processing could be utilised.  Polar (i.e. amplitude and phase) 
interpolation was utilised where the re-tabulation was 
performed separately on the square root of the magnitude of 
the field and the phase function.  The phase data was first 
unwrapped by changing all absolute jumps of greater than  to 
their 2 complement so as to remove any ± phase 
discontinuities that would otherwise upset the interpolation 
process [8].  Following the interpolation, the phase was 
wrapped back into the modulo 2 angular range. 

In order that an estimate of the upper bound error that this 
approximation introduces could be obtained, the regularised 
data was interpolated back onto the irregularly spaced 
measurement grid using sampling function, i.e. Whittaker, 
interpolation [8].  This sinc function interpolation scheme is 
rigorous, as the acquired data is spectrally band-limited 
however it relies upon the data being tabulated on a uniformly 
spaced grid.  Thus; it cannot be used in place of the 
approximate polynomial regularisation method.  Figure 2 
below contains a representative plot showing the measured 
data which is plotted together with the reconstructed data that 
was formed from the regularised data set.  Plotted with these 
traces is the 21 point “boxcar” mean average of the equivalent 
multipath level (EMPL) that can be taken to constitute an 
upper bound uncertainty level for this data regularisation 
process [8].  Here, the EMPL trace is more than 75 dB below 
the boresight values and circa 60 dB lower than the antenna 
pattern in the region of the wide-out side-lobes.  This pattern 
data was used in [7] to verify the multipath suppression 
technique, cf. Figures 5, 6 and 7 of that paper.  The processing 
that was demonstrated and validated in [7, 8] will be repeated 



 

 

here for the sake of comparison.  However, as the generalised 
processing technique presented above does not necessitate this 
sort of data regularisation the uncorrected irregularly sampled 
data was used as the starting point for the new post-processing 
algorithm. 
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Fig. 1  X-band corrugated horn AUT 
installed within QMUL CATR shown 

together with 0.6 m by 0.6 m reflecting 
plate, shown to right of picture. 

Fig. 2  Upper bound uncertainty of data 
regularisation process, equivalent 

multipath level shown in magenta and 
used as a measure of adjacency. 

Figure 3 and Figure 4 below contain, respectively, plots of 
the great-circle far-field co-polar amplitude and phase patterns 
of the AUT.  Here, the red unperturbed (reference) traces were 
taken without the reflecting plate, cf. Figure 1.  Conversely, the 
blue traces were taken with the reflecting plate installed within 
the chamber and they clearly show the effects of the additional 
scattering as a spurious large amplitude side-lobe which is 
visible in the plot at around  = 50.  The magenta trace 
represents the conventional interpolation and FFT based mode 
filtering post-processing as reported in reference [7] whereas 
the black trace denotes the more sophisticated inverse-matrix 
based post-processing technique presented above in Section II. 
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Fig. 3  Far-field amplitude plot of horn 
measured unperturbed and perturbed 
and compared against two different 
scattering suppression algorithms. 

Fig. 4  Far-field phase plot of horn 
measured unperturbed and perturbed 
and compared against two different 
scattering suppression algorithms. 

The measured far-field great circle pattern cut with 
scattering contamination, i.e. the perturbed measurement (blue-
trace), was post-processed using conventional [7] (magenta-
trace) and new (black-trace) generalised mode 
orthogonalisation and filtering algorithm, described above is 
presented in Figure 5.  From inspection of these plots, it can be 
seen that the effects of the spurious scatterer have been very 
effectively suppressed in both the amplitude and phase plots as 
the unperturbed and processed perturbed traces are clearly in 
very encouraging agreement.  This is further illustrated in 
Figure 5 which compares the two filtered far-field pattern cuts.  
The dB difference level is plotted in magenta and has an RMS 
level of -80dB which is a very encouraging result.  Conversely, 
Figure 6 presents an equivalent plot to that shown in Figure 5 
only here, the measured data was thinned so that only one in 
every ten data points were retained from the original far-field 
antenna pattern measurement increasing the angular sample 

spacing to circa 0.5.  Again, the RMS difference level was 
computed and it was also found to be -80 dB which is further 
confirmation of the stability and generality of this novel post-
processing technique. 
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Fig. 5  Far-field amplitude plot of horn 

with mode filtering applied using 
conventional and generalised mode 

filtering technique. 

Fig. 6  Far-field amplitude plot of horn 
with mode filtering applied using 

generalised mode filtering technique with 
course and finely sampled far-field data. 

By way of a final comparison, Figure 7 and Figure 8 
respectively, present the equivalent computed CMCs plotted as 
a function of mode index as obtained from the standard and 
new generalised algorithms.   Here, the CMCs are denoted by 
the blue trace with the band-pass filtered CMCs that are 
associated with the AUT being represented by the red trace.  
Here, it is evident that the plots are in very encouraging 
agreement with little difference being observed for the low 
order modes, which are seen at the centre of the plot.  
However, for the higher order modes there are some 
differences but these modes are not associated with the AUT 
and the differences will not impact upon the resulting 
processed far-field patterns, as presented above in Figure 5, as 
they will be filtered.  This is very valuable as it was found that 
even for the case where the data had been thinned so that only 
one point in every 20 measured points was retained; the RMS 
difference level remained at circa -80 dB.  The further thinning 
of the data resulted in the inability of the algorithm to compute 
the higher order CMCs however as those modes are not 
associated with the AUT their absence had no impact on the 
subsequent processing. 
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Fig. 7  Plot of amplitude of CMCs as 

obtained from conventional interpolation 
and FFT algorithm. 

Fig. 8  Plot of amplitude of CMCs as 
obtained from generalised pseudo 

inverse matrix method. 

The algorithm in effect, uses the larger number of data 
points to function fit a spectrum of CMCs to the measured data.  
The additional data points have the effect that the algorithm can 
more effectively suppress the effects of random noise within 
the measurement.  The reduction in the amount of measured 
data merely reduces the algorithms ability to discriminate 
against such broadband noise sources. 

Although the previous tests can be used to verify the 
performance of the new technique in the present intended area 



 

 

of application, it was decided that it would be worthwhile if 
further verification could be obtained for a more demanding, 
limiting case.  As a result, one tenth of the measured data 
points were taken from the finely sampled far-field cut such 
that the location of the points was allowed to vary randomly by 
up to 0.3 about the ideal angular position.  Conceptually, this 
corresponds to a gross timing jitter within the acquisition.  This 
is illustrated in Figure 9 which shows the original 
measurement, which is denoted by the red trace, with the down 
sampled data being represented by the black trace with crosses 
showing the location of the retained samples.  This data was 
processed using the new algorithm with the resulting far-field 
pattern being presented in Figure 10.  As before, the difference 
between the standard algorithm, which used all of the measured 
data, and the new coarsely sampled irregularly spaced data set 
using the new algorithm is denoted by the magenta trace.  The 
spurious scattering has been very effectively suppressed with 
the RMS difference level between baseline and perturbed 
measurement being found to be at the -60 dB level. 
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Fig. 9 Far-field main beam region 

showing location of points used.  The 
irregular sample spacing is very evident. 

Fig. 10 Far-field amplitude plot of horn 
measured unperturbed and perturbed 
and compared against baseline result. 

IV. SUMMARY AND CONCLUSION 

For the first time, this paper describes a new, very general 
post processing technique that requires only a minimum 
amount of information about the AUT and measurement 
geometry, which suppresses reflections in a far-field one-
dimensional frequency domain antenna pattern measurement 
where the data has not necessarily been acquired on an equally 
spaced abscissa.  This technique is entirely generic in nature, 
can be applied to a variety of different antenna types with no 
specific a priori assumptions being made about the distribution 
of the currents over the AUT.  The results presented above 
were produced using data that had been acquired on a regular 
time basis resulting in unequally spaced angular sample 
spacing.  This is a significant advance as many far-field 
measurement facilities, as a result of the implementation of the 
positioning, control and software sub-systems, are only able to 
tabulate measurements on an irregularly spaced angular grid. 

As has been observed previously [6, 7, 8], far-field mode 
orthogonalisation and filtering based scattering reduction 
techniques can be used with a very high degree of confidence 
as all of the steps within the measurement and analysis are 
consistent with the well-established principles of standard 
cylindrical near-field theory.  The offset of the AUT and the 
resulting finer sample spacing are estimated using 
conventional CNF rules, and the mathematical translation of 
the AUT to the origin is entirely rigorous.  The selection of the 

mode cut-off for the translated pattern is based on the physical 
dimensions of the AUT at its translated location.  The results 
of the processing will reduce but clearly cannot entirely 
eliminate the effect of scattering [8] however, and nonetheless, 
a very useful improvement in measurement quality can be 
obtained when using this technique.  As has been 
demonstrated, this novel frequency domain measurement and 
processing technique is entirely general and can be used to 
achieve acceptable results with use of minimal absorber or 
without the use of an anechoic chamber, even when testing 
lower gain antennas.  The future work is to include obtaining 
further verification of the technique with the use of full-wave 
three-dimension computational electromagnetic simulation 
tools. 
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